2.11ಶೇಷ ಪ್ರಮೇಯ ಮತ್ತು ಅಪವರ್ತನ ಪ್ರಮೇಯ (Remainder & Factor Theorem):

 

2.11.1 ಸಮೀಕರಣದ ಮೂಲಗಳು/ಬಹುಪದೋಕ್ತಿಯ ಶೂನ್ಯತೆಗಳು(Roots of an equation/zero of a polynomial)

 

4023m2n2 - 6032m2n - 8042m3 n4 ಈ ಬಹುಪದೋಕ್ತಿಯನ್ನು ಗಮನಿಸಿ.

ಇಲ್ಲಿ ಬಹುಪದೋಕ್ತಿಯು m ಮತ್ತು  n ಎನ್ನುವ ಚರಾಂಶಗಳನ್ನು ಹೊಂದಿರುವುದರಿಂದ ಈ ಬಹುಪದೋಕ್ತಿಯನ್ನು f(m,n) ಎಂದು ಗುರುತಿಸಬಹುದು.

f(m,n) = 4023m2n2 - 6032m2n - 8042m3 n4

ಬಹುಪದೋಕ್ತಿ f(x), x ಚರಾಕ್ಷರವನ್ನು ಮಾತ್ರ ಹೊಂದಿದ್ದು  ಈ ಕೆಳಗಿನ ಬೀಜೋಕ್ತಿಯ ರೂಪದಲ್ಲಿ ಇರುತ್ತದೆ.

f(x) = anxn+ an-1xn-1+ an-2xn-2+ ………. a2x2+ a1x+ a0 = 0

ಇಲ್ಲಿ  a0,a1,a2,……… an-1,an ಗಳು  ಸ್ಥಿರಾಂಕಗಳು ಮತ್ತು  an  0

a0,a1,a2,……… an-1 ಮತ್ತು an ಗಳನ್ನು ಅನುಕ್ರಮವಾಗಿ  x0,x1,x2……. xn-1 ಮತ್ತು xn  ಗಳಸಹಗುಣಕ (co-efficients)ಮತ್ತು  n ನ್ನು ಬಹುಪದೋಕ್ತಿಯ  ಮಹತ್ತಮ ಘಾತ(Degree)ಎನ್ನುತ್ತೇವೆ.

anxn, an-1xn-1,………. a2x2, a1x1, a0  ಗಳನ್ನು ಬಹುಪದೋಕ್ತಿಯ ಪದಗಳು(Term) ಎನ್ನುತ್ತೇವೆ..

f(x) = x5 - 9x2 + 12x - 14 ಆಗಿರಲಿ

x = 0 ಎಂದು ಆದೇಶಿಸಿದಾಗ f(0) =  0 -9*0 +12*0 -14 = -14

x = 1 ಎಂದು ಆದೇಶಿಸಿದಾಗ f(1) =   1-9+12-14= -10

x = -1 ಎಂದು ಆದೇಶಿಸಿದಾಗ f(-1) =  -36

f(a) = a5 - 9a2 + 12a - 14

 a ಯ ಯಾವುದೇ ಬೆಲೆಗೆ  (x=a), f(x) = 0 ಆದಾಗ  ‘a’ ಯನ್ನು ಸಮೀಕರಣ f(x)=0 ಮೂಲ(root) ಎನ್ನುತ್ತೇವೆ.

ಬಹುಪದೋಕ್ತಿ f(x) ನಲ್ಲಿ   f(a)=0 ಆದಾಗ  ‘a’ ಯನ್ನು ಬಹುಪದೋಕ್ತಿಯ  'ಶೂನ್ಯ(zero)' ಎನ್ನುತ್ತೇವೆ.

 

2.11.2  ಾಗಾಕಾರದ ಕುರಿತು:

ಭಾಜ್ಯ = ಭಾಜಕ*ಭಾಗಲಬ್ಧ + ಶೇಷ   

ವಾಸ್ತವಿಕ ಸಂಖ್ಯೆಗಳಿಗೆ ಹೇಗೆ ಮೇಲಿನ ಸಂಬಂಧ ಅನ್ವಯಿಸುವುದೋ ಅದೇ ರೀತಿ ಈ ಸಂಬಂಧ ಬಹುಪದೋಕ್ತಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ.

          ಮೇಲಿನ ಸಂಬಂಧವನ್ನು ಯೂಕ್ಲಿಡ್ ನ ಬಹುಪದೋಕ್ತಿಯ ಮೇಲಿನ ಭಾಗಾಕಾರದ ಅನುಪ್ರಮೇಯ(Lemma) ಎನ್ನುತ್ತೇವೆ.

          f(x)= g(x)*q(x)+ r(x)  ---(1)

          [ ಇಲ್ಲಿ  ಭಾಜಕ g(x) ವು ಭಾಜ್ಯ  f(x) ನ್ನು ಭಾಗಿಸಿದಾಗ  ಭಾಗಲಬ್ಧ  q(x) ಮತ್ತು ಶೇಷ  r(x)  ದೊರಕುತ್ತದೆ. ಗಮನಿಸಿ: g(x) 0 ಮತ್ತು r(x) =0  ಅಥವಾ ಅದರ  ಮಹತ್ತಮ ಘಾತ < g(x) ಮಹತ್ತಮ ಘಾತ]

          ಮೇಲಿನ (1) ರಲ್ಲಿ ಯಾವುದೇ ಮೂರು ಬಹುಪದೋಕ್ತಿಯನ್ನು ನೀಡಿದಾಗ ನಾಲ್ಕನೆಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಕಂಡುಹಿಡಿಯಬಹುದು.

          f(x), q(x) ಮತ್ತು r(x) ನೀಡಿದಾಗ g(x)= {f(x)-r(x)}/q(x)

          f(x), g(x) ಮತ್ತು q(x) ನೀಡಿದಾಗ r(x)=   f(x)-{ g(x) *q(x)}

         ಭಾಗಾಕಾರ ಮಾಡದೇ, ಬಹುಪದೋಕ್ತಿಯನ್ನು ಭಾಗಿಸಿದಾಗ  ಭಾಗಲಬ್ಧ ಮತ್ತು ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಸಾಧ್ಯವೇ?

        

          2.11 ಸಮಸ್ಯೆ 1: f(x) = x3+4x2-6x+2 ನ್ನ g(x)= (x-3) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಭಾಗಲಬ್ಧ ಮತ್ತು ಶೇಷ ಕಂಡು ಹಿಡಿ 

 

ಪರಿಹಾರ:

f(x)= g(x)*q(x)+ r(x)  ಆದಾಗ r(x) ಮಹತ್ತಮ ಘಾತ < g(x) ಮಹತ್ತಮ ಘಾತ ಎಂದು ತಿಳಿದಿದೆ. ಆದುದರಿಂದ  g(x) ಮಹತ್ತಮ ಘಾತ 0 ಆಗಿರಲೇಬೇಕು.  ಭಾಜ್ಯದ ಮಹತ್ತಮ ಘಾತ = 3 ಮತ್ತು ಭಾಜಕದ ಮಹತ್ತಮ ಘಾತ =1 ಆಗಿರುವುದರಿಂದ ಭಾಗಲಬ್ಧದ ಮಹತ್ತಮ ಘಾತ 2(=3-1) ಆಗಿರಲೇ ಬೇಕು.

 r(x) = k  (ಸ್ಥಿರಾಂಕ) ಹಾಗೆಯೇ  a, b ಮತ್ತು c ನ ಯಾವುದೇ ಬೆಲೆಗೆ q(x) = ax2+bx+c ಆಗಿರಲಿ.

 x3+4x2-6x+2 =(x-3)* (ax2+bx+c)+k= (ax3+bx2+cx)+(-3ax2-3bx-3c)+ k = ax3+x2(b-3a)+x(c-3b)+k-3c.

a=1;4=b-3a; -6=c-3b;2=k-3c (ಪದಗಳ ಸಹಗುಣಕಗಳನ್ನು ಸಮೀಕರಿಸಿದಾಗ)

 a=1; b=4+3a; c=3b-6; k=2+3c

ಇನ್ನೂ ಸುಲಭೀಕರಿಸಿದಾಗ a=1, b=7, c=15 ಮತ್ತು k= 47

 q(x) = ax2+bx+c

 q(x) = x2+7x+15 ಮತ್ತು r(x) = 47

 

ತಾಳೆ:

x3+4x2-6x+2 = (x-3)* (x2+7x+15)+47 ಎಂದು ಪರೀಕ್ಷಿಸಿ.

 

ಒಂದು  ಬಹುಪದೋಕ್ತಿಯನ್ನು ಇನ್ನೊಂದು  ಬಹುಪದೋಕ್ತಿಯಿಂದ ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡುವಂತೆ ಬದಲಿಸಲು  ಸಾಧ್ಯವೇ?

f(x)= g(x)*q(x)+ r(x) 

f(x) ನ್ನು  g(x) ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಬೇಕಾದರೆ r(x) ಶೂನ್ಯವಾಗಿರಲೇ ಬೇಕು.

·         ಮೊದಲು  f(x)  ನ್ನು  g(x) ನಿಂದ ಯಾವುದೇ ವಿಧಾನವನ್ನು ಅನುಸರಿಸಿ ಭಾಗಿಸಿ.( ಪಾಠ 2.10 ರಲ್ಲಿ ಕಲಿತ ದೀರ್ಘ ಭಾಗಾಕಾರ ವಿಧಾನ ಅಥವಾ   ಸಮಸ್ಯೆ 2.11.1 ಯನ್ನು ಬಿಡಿಸುವಲ್ಲಿ ಕಲಿತ ವಿಧಾನ).

·         ಆಗ  ಶೇಷ  r(x) ದೊರಕುತ್ತದೆ.

·         ಈ ಶೇಷವನ್ನು  f(x)  ನಿಂದ ಕಳೆಯಿರಿ. ಆಗ ದೊರಕುವ ಬೀಜೋಕ್ತಿಯು  g(x) ನಿಂದ ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡುತ್ತದೆ

 

2.11 ಸಮಸ್ಯೆ 2:  x3+5x2+5x+8  ನಿಂದ ಎಷ್ಟನ್ನು ಕಳೆದರೆ ಅಥವಾ ಕೂಡಿಸಿದರೆ ಅದು x2+3x-2  ರಿಂದ  ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡುತ್ತದೆ?

 

ಪರಿಹಾರ:

x3+5x2+5x+8 ನ್ನು x2+3x-2 ರಿಂದ ಭಾಗಿಸಿದಾಗ  ನಮಗೆ ಸಿಗುವ ಶೇಷ:x+4

x3+5x2+5x+8 ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡಬೇಕಾದರೆ ಶೇಷ 0 ಆಗಿರಬೇಕಾಗಿರುವುದರಿಂದ  x3+5x2+5x+8 ರಿಂದ x+4 ನ್ನು ಕಳೆಯಬೇಕು.

 ಉತ್ತರ = (x3+5x2+5x+8) – (x+4)= x3+5x2+5x+8-x-4 = x3+5x2+4x+4

 

 

ಅಧ್ಯಾಯ 2.10 ರಲ್ಲಿ ಕಲಿತಂತೆ ಭಾಗಾಕಾರ ಕ್ರಮದಲ್ಲಿ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಲು ತುಂಬಾ ಸಮಯ ಬೇಕು. ಹಾಗಾದರೆ, ಶೇಷವನ್ನು ಮಾತ್ರ ಕಂಡುಹಿಡಿಯುವ ಸುಲಭ ದಾರಿ ಇದೆಯ?

ಅಧ್ಯಾಯ 2.10 ರಲ್ಲಿ  ಬಿಡಿಸಿದ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಶೀಲಿಸಿದಾಗ ಕೆಲವೊಂದು ಅಂಶಗಳು ಕಂಡುಬರುತ್ತವೆ.

 

 

2.10.3.1 ರ ಸಮಸ್ಯೆಯನ್ನು ತಿರುಗಿ ಪರಿಶೀಲಿಸುವ: 7+x3-6x ನ್ನ  x+1 ರಿಂದ ಭಾಗಿಸಿ.

ಇಲ್ಲಿ ಭಾಜ್ಯವನ್ನು f(x)  {‘x’  ನ ಸತ್ಪನ್ನ (Function)}ಎಂದು ಕರೆಯುತ್ತೇವ.}

f(x) = 7+x3-6x

ಈಗ f(a) ಯ ಬೆಲೆಯನ್ನು ‘a’ ಯ ಬೇರೆಬೇರೆ ಬೆಲೆಗಳಿಗೆ (1, 2,0,-1,-2) ಕಂಡುಹಿಡಿಯುವಾ.

f(1) =  2, f(0) =7, f(-1) = 12, f(-2) = 11.

ಈಗ ನಾವೇನು ನೋಡುತ್ತೇವೆ? f(-1)=12 ಇದೇ ಶೇಷ.

(x4-2x3+x-7) ನ್ನು    (x+2)  ರಿಂದ ಭಾಗಿಸುವ ಲೆಕ್ಕವನ್ನು ಪರಿಶೀಲಿಸುವಾ. (ಸಮಸ್ಯೆ 2.10.3.2)

f(x) = x4-2x3+x-7

f(x)  ನ ಬೆಲೆಯನ್ನು 'x' ಬೇರೆ ಬೇರೆ ಬೆಲೆಗಳಿಗೆ( 1, 2, 0,-1,-2) ಕಂಡು ಹಿಡಿಯುವಾ

f(1) =  -7, f(2)  =-5,  f(0)  =-7, f(-1) =-5,  f(-2)=23  ಯು ಶೇಷವಾಗಿರುತ್ತದೆ.

 

ಈಗ ಬೇರೆಬೇರೆ ಕೆಲವು ಭಾಜ್ಯ ಮತ್ತು ಭಾಜಕಗಳಿಗೆ ಶೇಷದ ತಃಖ್ತೆ ಮಾಡುವಾ.

 

ಭಾಜ್ಯ - f(x)

ಭಾಜಕ g(x)

ಶೇಷ r(x)

ಶೇಷ =  ಸತ್ಪನ್ನದ ಬೆಲೆ f(k)

x3-6x +7

x+1

12

f(-1)

x4-2x3+x-7

x+2

23

f(-2)

x+1

x+1

0

f(-1)

x-1

x-1

0

f(1)

x+a

x+a

0

f(-a)

x-a

x-a

0

f(a)

x2+4x+4

x+2

0

f(-2)

 

 

ಈ ಮೇಲಿನ ಅಂಶಗಳನ್ನು ಗಮನಿಸಿದಾಗ ನಾವು ಹೀಗೆ ಹೇಳಬಹುದು:

ಒಂದು ಬಹುಪದೋಕ್ತಿ f(x) ನ್ನು  (x+a) ರೂಪದ ಏಕಪದೋಕ್ತಿಯಿಂದ ಭಾಗಿಸಿದಾಗ ಬರುವ ಶೇಷವು f(-a) ಆಗಿರುತ್ತದೆ.

 

ಇದನ್ನು ಶೇಷ ಪ್ರಮೇಯ(Remainder Theorem) ಎನ್ನುತ್ತೇವೆ.

 

ಶೇಷ ಪ್ರಮೇಯದ  ಸಾಧನೆ:

            ಸಾಧನೆ:   

ಒಂದು ಬಹುಪದೋಕ್ತಿ f(x) ಯನ್ನು (x+a)  ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ f(-a) ಆಗಿರುತ್ತದೆ ಎನ್ನುವುದೇ  ಶೇಷ ಪ್ರಮೇಯ.

f(x)  ನ್ನು  (x+a) ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಸಿಗುವ  q(x)  ಮತ್ತು   r(x)  ಗಳು  ಭಾಗಲಬ್ದ ಮತ್ತು ಶೇಷಗಳಾಗಿರಲಿ.

 

ಭಾಜ್ಯ = ಭಾಜಕ*ಭಾಗಲಬ್ಧ + ಶೇಷ

  f(x) = q(x)*(x+a) + r(x)

ಗಮನಿಸಿ:

ಭಾಜಕ (=(x+a)) ದ ಮಹತ್ತಮ ಘಾತ :1.

ಶೇಷ  (= r(x)) ದ ಮಹತ್ತಮ ಘಾತ <  ಭಾಜಕದ ಮಹತ್ತಮ ಘಾತ.

ಅದುದರಿಂದ ಶೇಷದ ಮಹತ್ತಮ ಘಾತ  = 0 ಆಗಿರುತ್ತದೆ, ಅಂದರೆ ಶೇಷವು  x ಪದವನ್ನು ಹೊಂದಿರದೇ ಒಂದು ಸ್ಥಿರಾಂಕವಾಗಿರುತ್ತದೆ(= ‘r’)

f(x) = q(x)*(x+a)+r

ಮೇಲಿನ ಸಮೀಕರಣದಲ್ಲಿ   x = -a  ಎಂದು ಆದೇಶಿಸಿದಾಗ:

f(-a) = q(-a)*(-a+a)+r = q(-a)*0+r = r

ಅಂದರೆ ಪ್ರಮೇಯವನ್ನು ಸಾಧಿಸಿದಂತಾಯಿತು.

ಗಮನಿಸಿ: ಬಹುಪದೋಕ್ತಿ f(x),ನ್ನು (ax+b)  ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ  = f(-b/a) [  ax+b = (x+b/a) ]

 

ಅಪವರ್ತನ ಪ್ರಮೇಯ (Factor Theorem):

 

f(-a) = 0  ಆದಾಗ  (x+a) ಯು  ಬಹುಪದೋಕ್ತಿ f(x) ನ ಅಪವರ್ತನವಾಗಿರುತ್ತದೆ.

 

ಸಾಧನೆ:

f(-a) = 0  ಆಗಿರಲಿ.

ಶೇಷ ಪ್ರಮೇಯದಂತೆ f(x) ನ್ನು  (x+a)   ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಸಿಗುವ ಶೇಷ = f(-a). ಇದು 0 ಆಗಿರುವುದರಿಂದ (x+a) ಯು  f(x) ನ್ನು ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸುತ್ತದೆ. ಅಂದರೆ (x+a) ಯು  ಬಹುಪದೋಕ್ತಿ f(x) ನ ಅಪವರ್ತನವಾಗಿರುತ್ತದೆ

 

2.11 ಸಮಸ್ಯೆ3: (x3+2x2-x+6) ನ್ನು (x-3) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಬರುವ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

 

ಪರಿಹಾರ:

ಇಲ್ಲಿ f(x) = x3+2x2-x+6

ಭಾಜಕ = x-3

ಶೇಷ ಪ್ರಮೇಯದಂತೆ ಭಾಜಕವು (x+a) ಆಗಿದ್ದರೆ, ಶೇಷವು f(-a) ಆಗಿರುತ್ತದೆ.

ಭಾಜಕ (x+a) ಆದರೆ , f(-(-3) = f(3) ಶೇಷವಾಗಿರುತ್ತದೆ.

f(x) ನಲ್ಲಿ x ನ ಬದಲಾಗಿ 3 ನ್ನು ಆದೇಶಿಸಿದಾಗ,

f(3) = 27+ 18-3+6 = 48 ಶೇಷ

2.11 ಸಮಸ್ಯೆ4: (4x4+2x3-3x2+8x+5a) ಯ ಒಂದು ಅಪವರ್ತನ (x+2) ಆದರೆ, ‘a’ ಯ ಬೆಲೆ ಕಂಡುಹಿಡಿ.

 

ಪರಿಹಾರ:

(x+2) ಎಂಬುದು f(x) ನ ಅಪವರ್ತನವಾದ್ದರಿಂದ ಶೇಷವು ಸೊನ್ನೆ.  ಅಂದರೆ ಶೇಷ ಪ್ರಮೇಯದ ಪ್ರಕಾರ ಶೇಷ = f(-2)

ಆದರೆ f(-2) =0 (ದತ್ತ)

 

f(-2) = 4*16+2*(-8)-3*4 -16+5a

        = 64-16-12-16+5a = 20 +5a

 f(-2) =0 ಆಗಿರುವುದರಿಂದ  20+5a = 0 ಅಂದರೆ 5a = -20 ಅಂದರೆ a= -4

 

ತಾಳೆ:

 a= -4 ಆಗಿರುವುದರಿಂದ, -4 ನ್ನ  f(x) ನಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ

f(x) = 4x4+2x3-3x2+8x-20

f(-2)  = 4*16+2(-8)-3*4 -16 -20 = 64-16-12-16-20 = 0

x+2 ವು 4x4+2x3-3x2+8x-20 ನ ಅಪವರ್ತನ ಎಂದು ಸಮರ್ಥಿಸುತ್ತದೆ.

 

2.11 ಸಮಸ್ಯೆ 5:  3x3+7x ನ ಅಪವರ್ತನವು 7+3x ಆಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಿ.

ಪರಿಹಾರ:

f(x) = 3x3+7x

 

f(x) ಅಪವರ್ತನವು 7+3x ಆಗಿದ್ದರೆ  ಅದರ ಅಪವರ್ತನ  3*(7/3+x) ಆಗಿರಲೇ ಬೇಕು.

( m0, n0   ಮತ್ತು y=mn  ಹಾಗೂ  y  f(x) ನ ಅಪವರ್ತನವಾಗಿದ್ದರೆ, m ಮತ್ತು n ಗಳೂ  ಕೂಡ  f(x  ನ ಅಪವರ್ತನವಾಗಿರುತ್ತವೆ.)

 

f(-7/3) = 3(-7/3)3 +7(-7/3) =  -343/9 -49/3 0

 7+3x  ೀಡಿದ ಬಹುಪದೋಕ್ತಿಯ  ಅಪವರ್ತನವಲ್ಲ.

ಗಮನಿಸಿ: 3x3+7x = x(3x2+7) ಆಗಿರುವುದರಿಂದ  7+3x  ಅದರ  ಅಪವರ್ತನವಲ್ಲ.

 

2.11 ಸಮಸ್ಯೆ 6: ಸಮೀಕರಣ x2-2x=0 ರ ಮೂಲಗಳು 0, 1, 2 ಆಗಿವೆಯೇ?

 

ಪರಿಹಾರ:

f(x) = x2-2x ಆಗಿರಲಿ.

f(0) = 02-2*0 = 0,

f(1) = 12-2 = -1

f(2) = 22-2*2 = 0

 0 ಮತ್ತು 2 ಬಹುಪದೋಕ್ತಿ ಮೂಲಗಳು ಆದರೆ 1 ಅಲ್ಲ.

 

2.11  ಸಮಸ್ಯೆ 7: f(x) = x2+5x+p ಮತ್ತು q(x) = x2+3x+q ಸಾಮಾನ್ಯ ಅಪವರ್ತನವನ್ನು ಹೊಂದಿದೆ.

(i) ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ಕಂಡು ಹಿಡಿ

(ii) (p-q)2= 2(3p-5q) ಎಂದು ತೋರಿಸಿ

 

ಪರಿಹಾರ:

 

f(x)  ನ ಮಹತ್ತಮ ಘಾತ  2 ಮತ್ತು ಅದು ಅಪವರ್ತನ ಹೊಂದಿರುವುದರಿಂದ, ಅಪವರ್ತನದ ಮಹತ್ತಮ ಘಾತ 1 ಆಗಿರಲೇ ಬೇಕು.

ಅಪವರ್ತನ  x-k ಆಗಿರಲಿ

 f(k) = k2+5k+p = 0

 x-k ಯು  q(x) ನ ಅಪವರ್ತನ ಆಗಿರುವುದರಿಂದ

 q(k) = k2+3k+q = 0

 k2+5k+p = k2+3k+q: ಸುಲಭೀಕರಿಸಿದಾಗ

k = (1/2)(q-p)

ಆದುದರಿಂದ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ = x-k = x - (1/2)(q-p)

= x + (1/2)(p-q)

K ನ ಬೆಲೆಯನ್ನು f(x) ನಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ

((q-p)/2)2+5(q-p)/2+p = 0

i.e. (p-q)2/4+5(q-p)/2+p = 0

i.e. (p-q)2+10(q-p)+4p = 0

i.e. (p-q)2 = 10p-10q-4p

              = 6p-10q

              = 2(3p-5q)

 

2.11 ಸಮಸ್ಯೆ 8: f(1/3) ಮತ್ತು f(3/2)=0 ಎಂದು ಕೊಟ್ಟಿರುವಾಗ  6x2-11x+3  ನ್ನು  ಅಪವರ್ತಿಸಿ

ಪರಿಹಾರ:

f(x) = 6x2-11x+3

(x-1/3) ಮತ್ತು (x-3/2) ಗಳ f(x) ಅಪವರ್ತನಗಳಎಂದನೀಡಿದೆ.

(x-1/3)*(x-3/2)

= x2 - (1/3)x (3/2)x + 3/6

= x2 - (11/6)x +3/6

= (6x2-11x+3)/6.

ಎರಡಬದಿಯನ್ನ 6 ರಿಂದ ಗುಣಿಸಿದಾಗ

f(x) = 6x2-11x+3 = 6(x-1/3)*(x-3/2)

 

2.11 ಸಮಸ್ಯೆ 9: x3 +2x2 - 5x – 6 ಅಪವರ್ತನ (x+1)  ಆಗಿದ್ದಉಳಿದ ಅಪವರ್ತನವನ್ನಕಂಡುಹಿಡಿ.

ಸೂಚನೆ:

f(x) = x3 + 2x2- 5x - 6

f(-1) = -1+2+5-6 =0 ಆಗಿರುವುದರಿಂದ  f(x)   ಅಪವರ್ತನ (x+1).  

2.10 ರಲ್ಲಿ ಕಲಿತಂತೆ ದೀರ್ಘಭಾಗಾಕಾರದಂತೆ

f(x) = (x+1)(x2+x-6)

 ಆದರೆ (x2+x-6)

= (x2+3x-2x-6)

= x(x+3)-2(x+3)

= (x+3)(x-2)

 f(x) = (x+1)(x-2)(x+3)

 

2.11 ಸಮಸ್ಯೆ 10: ಒಂದು ವರ್ಗಬಹುಪದೋಕ್ತಿಯನ್ನು (x-1), (x+1) ಮತ್ತು (x-2) ಭಾಗಿಸಿದಾಗ ಶೇಷವು ಕ್ರಮವಾಗಿ 2,4 ಮತ್ತು 4 ಆಗಿದ್ದರೆ, ಆ ವರ್ಗಬಹುಪದೋಕ್ತಿಯನ್ನು ಕಂಡು ಹಿಡಿ.

 

ಪರಿಹಾರ:

f(x) = ax2+bx+c  ಆಗಿರಲಿ.

f(1)=2, f(-1)=4 ಮತ್ತು f(2)=4 ಎಂದು ನೀಡಿದೆ.

ಆದರೆ f(1) = a+b+c, f(-1) = a–b+c ಮತ್ತು f(2) = 4a+2b+c

 

·         a+b+c = 2

·         a-b+c = 4

·         4a+2b+c = 4

 

2.14.3  ರಲ್ಲಿ ವಿವರಿಸಿದಂತೆ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸಿದಾಗ

a=1, b=-1 ಮತ್ತು c=2

ಆದುದರಿಂದ ವರ್ಗಬಹುಪದೋಕ್ತಿಯು x2-x+2.

 

2.11 ಸಮಸ್ಯೆ 11:  px2+qx+6 ನ್ನು (2x+1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ 1 ಮತ್ತ  2qx2+6x+p ನ್ನು (3x-1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ 2 ಉಳಿದರೆ, p ಮತ್ತು q ಕಂಡು ಹಿಡಿ.

 

ಪರಿಹಾರ:

f(x) = px2+qx+6,  g(x) = 2qx2+6x+p  ಆಗಿರಲಿ.

f(x) ನ್ನು (2x+1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ = 1. ಆದುದರಿಂದ  f(-1/2) = 1

 p/4 –q/2+6 = 1 

i.e. p-2q = -20 (ಸುಲಭೀಕರಿಸಿದಾಗ)    ---à(1)

g(x) ನ್ನು (3x-1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ = 2. ಆದುದರಿಂದ  g(1/3) = 2

 2q/9 + 6/3 +p = 2 

i.e. 9p+2q = 0 (ಸುಲಭೀಕರಿಸಿದಾಗ)      ---à(2)

 (1) ಮತ್ತು (2) ಬಿಡಿಸಿದಾಗ

p = -2 ಮತ್ತು q = 9

 

ಸಂಶ್ಲೇಷಿತ ಭಾಗಾಕಾರ  (Synthetic method): (x-a) ಭಾಜಕವು  ಆದಾಗ

 

ದೀರ್ಘಭಾಗಾಕಾರ ಕ್ರಮಕ್ಕಿಂತ ಸುಲಭವಾಗಿ ಈ ವಿಧಾನದಲ್ಲಿ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು. ಒಂದು ಸಮಸ್ಯೆಯನ್ನು ಆಧರಿಸಿ ಈ ವಿಧಾನವನ್ನು ಕಲಿಯಬಹುದು. (2.10.3 ಸಮಸ್ಯೆ 2 ನೋಡಿ).

x5 -9x2 +12x-14 ನ್ನು (x -3) ರಿಂದ ಭಾಗಿಸಿ.

 

ಪರಿಹಾರ:

 

ಭಾಜ್ಯ x5 -9x2 +12x-14 ನ್ನು  ಘಾತಾಂಕದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆದಾಗ  ಅದು: 1x5 + 0x4 + 0x3 - 9x2 + 12x - 14.

ಇಲ್ಲಿ ಭಾಜಕದ ಸ್ಥಿರಾಂಕ  -3

1.      ಮೊದಲು ’ಭಾಜಕ’ ದ ಕೆಳಗೆ ಭಾಜಕದ  ಋಣ ಸ್ಥಿರಾಂಕವನ್ನು ಮೊದಲ ಅಡ್ಡ ಸಾಲಿನ ಮೊದಲ ಕಂಬಸಾಲಿನಲ್ಲಿ ಬರೆಯಿರಿ.( ಈ ಲೆಕ್ಕದಲ್ಲಿ 3 ) ಮೊದಲ ಸಾಲಿನ ಮುಂದಿನ ಕಂಬಸಾಲುಗಳಲ್ಲಿ  ಭಾಜ್ಯದ  ಸಹಗುಣಕಗಳನ್ನು(1, 0, 0, -9, 12, -14) ಬರೆಯಿರಿ.

2.      ಭಾಜ್ಯದ ಮೊದಲ ಪದದ ಸಹಗುಣಕವನ್ನು 3 ನೇ ಅಡ್ಡ ಸಾಲಿನ ಸರಿಹೊಂದುವ(ಮೊದಲ) ಕಂಬಸಾಲಿನಲ್ಲಿ ಬರೆಯಿರಿ ( ಈ ಲೆಕ್ಕದಲ್ಲಿ 1 )

3.      3 ನೇ ಅಡ್ಡ ಸಾಲಿನ ಈ ಕಂಬಸಾಲಿನಿಂದ ಆರಂಭಿಸಿ ಭಾಜಕ( ಈ ಲೆಕ್ಕದಲ್ಲಿ 3 )  ಮತ್ತು ಈ ಕಂಬಸಾಲಿನಲ್ಲಿನ ( ಈ ಲೆಕ್ಕದಲ್ಲಿ 1 ) ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ, ಅದೇ 2 ನೇ ಅಡ್ಡಸಾಲಿನ ಮುಂದಿನ ಕಂಬಸಾಲಿನಲ್ಲಿ ಬರೆಯಿರಿ. ( ಈ ಲೆಕ್ಕದಲ್ಲಿ  3 ನೇ ಕಂಬಸಾಲಿನಲ್ಲಿ  3*1=3 ),

4.      3 ನೇ ಕಂಬಸಾಲಿನ ಕೆಳಗಿರುವ 1 ನೇ ಮತ್ತು 2 ನೇ ಆಡ್ಡಸಾಲಿನಲ್ಲಿನ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತವನ್ನು  3  ನೇ ಅಡ್ಡಸಾಲಿನಲ್ಲಿ ಬರೆಯಿರಿ( ಈ ಲೆಕ್ಕದಲ್ಲಿ  0+3=3).

5.      ಈ ಕ್ರಮವನ್ನು  ಕೊನೇ ಕಂಬಸಾಲಿನಲ್ಲಿ ಉತ್ತರ ಬರುವ ತನಕ ಮುಂದುವರಿಸಿ.

6.      3 ನೇ ಅಡ್ಡ ಸಾಲಿನ ಕೊನೇ ಕಂಬಸಾಲಿನಲ್ಲಿನ ಸಂಖ್ಯೆಯೇ  ಶೇಷವಾಗಿರುತ್ತದೆ

7.      3 ನೇ ಅಡ್ಡ ಸಾಲಿನ ಉಳಿದ ಕಂಬಸಾಲಿನಲ್ಲಿನ ಸಂಖ್ಯೆಗಳು ಭಾಗಲಬ್ಧದ ಸಹಗುಣಕಗಳು.

 

 

ಭಾಜಕ

ಭಾಜ್ಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಹಾಗೆ ಕಂಬ ಸಾಲುಗಳು(2 ರಿಂದ)

 

3

1

0

0

-9

12

-14

ಮೊದಲ ಅಡ್ಡ ಸಾಲು

 

3(=3*1)

9(= 3*3)

27(= 3*9)

54(= 3*18)

198(= 3*66)

2 ನೇ ಅಡ್ಡ ಸಾಲು

 

1

3=(0+3)

9(= 0+9)

18(=-9+27)

66(=12+54)

184(=-14+198)

3 ನೇ ಅಡ್ಡ ಸಾಲು

 

ಭಾಗಲಬ್ಧವು 1x4+3x3+9x2+18x+54  ಆಗಿದ್ದು ಶೇಷವು  184, ಆಗಿರುವುದನ್ನು ಗಮನಿಸಿ. ಇದೇ ಉತ್ತರ 2.10.3 ಸಮಸ್ಯೆ 2 ರಲ್ಲಿ ನಮಗೆ ದೊರಕಿತ್ತು.

 

 

 

 

2.11  ಕಲಿತ ಸಾರಾಂಶ

 

 

ಕ್ರ.ಸಂ.

ಕಲಿತ ಮುಖ್ಯಾಂಶಗಳು

1

ಒಂದು ಬಹುಪದ f(x) ನ್ನು (x+a) ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷವು = f(-a) ಆಗಿರುತ್ತದೆ.

2

ಒಂದು ಬಹುಪದ f(x) ನ್ನು (x+a) ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷವು ಸೊನ್ನೆಯಾದರೆ (x+a) ಯು f(x) ನ ಒಂದು ಅಪವರ್ತನವಾಗಿರುತ್ತದೆ.