2.15 Algebraic Structure:
We are aware of addition, subtraction,
multiplication and division operations. They can be termed as basic operations.
Can we have more operations? Yes, for example we
can have operations like:
1 Sum of two numbers
divided by 2 { (a+b)/2} –
Average
2. A number raised to the
power of another number (mn) –
Exponentiation
Recall:
Expression |
Short form(Symbol) |
Belongs to |
|
Does not belong to |
|
For Every |
|
There exists |
|
Such that |
: |
Set of Natural numbers
N = {1,2,3,4 …} =
{ n: n natural numbers}
Set of whole numbers W = {0,1,2,3,….}
= {n: n =0, and n{N}}
2.15 Example1:
S = {2, 4, 8,16….} = {
Numbers raised to the powers of 2 starting with 2} = {2m ;where m is any natural number >1}
Let us do addition, multiplication, exponentiation
operations on this set S. and we observe
1. The sum of any two numbers of S does not belong
to S (ex; 6(=2+4),10(=2+8),12(=4+8) do not belong to
S)
2. The
product of any two numbers of S belongs to the set S.
Why?
(If 2m and 2n
are two
numbers then the product is2m+n
[= (2m )*(2n)] which belongs to S)
3. The
exponentiation of any 2 numbers of S belongs to the set S .
Why ?
(If 2m and 2n
are two
numbers then the exponent 2mz [=(2m )z where z =2n
belongs to S)
Observation: The result of sum ‘operation’ on any element of S does not belong to S. But the
result of multiplication and exponentiation
‘operations’ on any element of S belongs to S
Definition:
1.If a, b A and the result of ‘operation’ on a, b A, then we say
that A satisfies closure property w.r.t ‘operation’ ( w.r.t is short form
for with respect to)
2. If a, b A and c = a‘operation’b A, then we say that ‘operation’ is
a Binary opeartion. By convention this ‘operation’
is denoted by ‘*’(not to be confused with
multiplication)and
a ‘operation’
b is read as ‘a star b’.
In the case of example 1, we note that S does not
satisfy closure property w.r.t addition and hence the
addition ‘operation’ is not a Binary operation
on S.
But multiplication and exponentiation ‘operations’ satisfy closure property and these two ‘operations’ are binary operations on S
Examples:
No. |
Set
|
Star () |
Observations |
Conclusion |
Reasoning
|
1 |
N
= {1,2,3; Natural Numbers} |
sum |
,a,b N, a+b N |
N
Satisfies Closure property w.r.t + |
Sum
of 2 natural numbers is a natural number |
2 |
N
= {1,2,3; Natural Numbers} |
product |
,a,b N, a* b N |
N
Satisfies Closure property w.r.t * |
Product of 2 natural numbers is a natural number |
3 |
A
= {1,3,5: Odd numbers} |
sum |
,a,b N, a+b N |
A
does not satisfy closure property w.r.t + |
Sum
of 2 odd number is an even number |
4 |
B
= {1,3,5: Odd numbers} |
product |
,a,b N, a*b N |
B
satisfies closure property w.r.t * |
Product of 2 odd number is an odd number |
5 |
Z
=(0,-1,1,2,-2: Integers) |
Average |
,a,b Z, ab=(a+b)/2 Z |
Z
does not satisfy closure property w.r.t the ‘operation: Average’ |
Operation
0 star 1 = (0+1)/2 which is a fraction and not an integer |
6 |
Q
= (p/q, where p,q Z and q 0 |
Division
|
,a,b Q, a/b Q, though 0 Q |
Q
does not Satisfy closure property w.r.t the ‘operation: /’ |
Division
of rational number by 0 is undefined ( Though
0 Q, 1/0 Q) |
Relationship between Closure property and Binary
operation:
If any set
satisfies the closure property w.r.t an operation
then that operation is a binary operation and conversely if an operation on a
set is binary operation then the set satisfies closure property w. r. t that
operation.
Definition:
The ‘algebraic
structure’ is a pattern such that the non empty set S and the ‘operation(*)’ on S is a binary operation. The algebraic
structure is denoted by the expression (S,*)
In the examples listed above we can see that (N,+),(N,*),(B,*)
are all Algebraic structures and
(A,+),(Z, average), (Q,/) are not Algebraic
structures.
2.15 Summary of
learning
No |
Points
to remember |
1 |
If a, b A and the result of
‘operation’ on a, b A, then we say
that A satisfies closure property w.r.t ‘operation’ |
2 |
If any set satisfies the closure property w.r.t an operation then that operation is a binary
operation and conversely if an operation on a set is binary operation then
the set satisfies closure property w. r. t that operation. |
3 |
The Algebraic structure is a
pattern such that the non empty set S and the ‘operation(*)’ on S
is a binary operation and is
denoted by the expression (S,*) |