2.5 ಬೀಜೋಕ್ತಿಗಳ
ಮ.ಸಾ.ಅ ಮತ್ತು
ಲ.ಸಾ.ಅ
(HCF(GCD)
and LCM of Algebraic terms):
ಎರಡು ಅಥವಾ ಹೆಚ್ಚು ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ ಎಂದರೇನೆಂದು ನಮಗೀಗಾಗಲೇ ತಿಳಿದಿದೆ. ಅದು ಎಲ್ಲಾ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳಲ್ಲಿ ಅತಿದೊಡ್ಡದಾಗಿದೆ.
ಉದಾಹರಣೆಗೆ 4, 8, 20, 16. - ಈ ನಾಲ್ಕು ಸಂಖ್ಯೆಗಳನ್ನು ನೋಡಿ. 2 ಮತ್ತು 4 ಇವೆರಡು ಮೇಲಿನ ನಾಲ್ಕು ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನವಾಗಿದ್ದು 4 ದೊಡ್ಡದಾಗಿದೆ. 4, 8, 20, 16- ಇವುಗಳ ಮ.ಸಾ.ಅ 4.
ಮ.ಸಾ.ಅ ವು ಭಿನ್ನರಾಶಿಗಳನ್ನು ಸುಲಭ ರೂಪಕ್ಕೆ ತರಲು ಉಪಯುಕ್ತ.
ಉದಾಹರಣೆಗೆ ಒಂದು ಭಿನ್ನರಾಶಿ =
30/48 ನ್ನು ನೋಡುವಾ.
30 ಮತ್ತು 48 ರ ಮ.ಸಾ.ಅ 6.
30/48 = (6*5)/(6*8) ಅಂಶ ಮತ್ತು ಛೇದಗಳಲ್ಲಿನ ಸಾಮಾನ್ಯ ಅಪವರ್ತ್ಯಗಳನ್ನು ತೆಗೆದಾಗ
= 5/8
ಲ.ಸಾ.ಅ ಎಂದರೇನು? ಅದು ದತ್ತ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ಗುಣಕ (ಅಪವರ್ತ್ಯ) ಗಳಲ್ಲಿ ಚಿಕ್ಕದು ಆಗಿರುತ್ತದೆ.
ಉದಾಹರಣೆಗೆ 4, 8, 20, 16 ಇವುಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತ್ಯಗಳು =80, 160, 320
ಇವುಗಳಲ್ಲಿ ಚಿಕ್ಕದು =
80 .
ಇದು ದತ್ತ ಸಂಖ್ಯೆಗಳ ಲ.ಸ.ಅ.
ಲ.ಸಾ.ಅ ವು ಭಿನ್ನರಾಶಿಗಳನ್ನು ಕೂಡಿಸಲು ಉಪಯುಕ್ತ.
ಈಗ 1/4, 1/8, 1/20 ನ್ನ ಕೂಡಿಸುವಾ.
4,8,20 ರ ಲ.ಸಾ.ಅ = 40
1/4 = 10/40
1/8 = 5/40
1/20 = 2/40
1/4+1/8+1/20 = 10/40+5/40+2/40 = (10+5+2)/40 = 17/40
ಬೀಜೋಕ್ತಿಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅಗಳನ್ನು ಕಂಡುಹಿಡಿಯಲು ಕೂಡಾ ನಾವು ಮೇಲಿನ ಕ್ರಮವನ್ನೇ ಅನುಸರಿಸುತ್ತೇವೆ. ಈಗ ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯುವ ಕ್ರಮವನ್ನು ಪುನರಾವರ್ತಿಸುವಾ
ಹಂತ |
ವಿಧಾನ |
1 |
ಎಲ್ಲಾ ಸಂಖ್ಯೆಗಳನ್ನು ಪಟ್ಟಿಮಾಡಿ. |
2 |
ಎಡಭಾಗದಲ್ಲಿ ಎಲ್ಲ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ವಿಭಾಜಕವನ್ನು ಬರೆಯಿರಿ. |
3 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಭಾಗಲಬ್ಧಗಳನ್ನು ಬರೆಯಿರಿ. |
4 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಪಡೆದ ಸಂಖ್ಯೆಗಳ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಭಾಜಕವನ್ನು ಎಡಬದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
5 |
ಎಲ್ಲಾ ಪದಗಳಿಗೂ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಸಿಗುವವರೆಗೂ ಈ ಕ್ರಿಯೆಯನ್ನು ಮುಂದುವರಿಸಿ. |
ಸಾಮಾನ್ಯ ಭಾಜಕಗಳ ಗುಣಲಬ್ಧವೇ ದತ್ತ ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ.
ಉದಾ: 16,24,20 ರ ಮ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
2 | 16,24,20
2 |
8,12,10
4, 6, 5
4,
6, 5 ಮೂರು ಸಂಖ್ಯೆಗಳಿಗೆ ಇನ್ನು ಸಾಮಾನ್ಯ ಭಾಜಕ ಇಲ್ಲ. ಆದ್ದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
16,24,20 ಇವುಗಳ ಮ.ಸಾ.ಅ = (2*2) = 4
ಲ.ಸಾ.ಅ ಕಂಡು ಹಿಡಿಯುವುದು:
ಹಂತ |
ವಿಧಾನ |
1 |
ಎಲ್ಲಾ ಸಂಖ್ಯೆಗಳನ್ನು ಪಟ್ಟಿಮಾಡಿ. |
2 |
ಎಡಭಾಗದಲ್ಲಿ ಎಲ್ಲ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ವಿಭಾಜಕವನ್ನು ಬರೆಯಿರಿ. |
3 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಭಾಗಲಬ್ಧಗಳನ್ನು ಬರೆಯಿರಿ. |
4 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಪಡೆದ ಸಂಖ್ಯೆಗಳ ಕನಿಷ್ಟ ಸಾಮಾನ್ಯ ಭಾಜಕವನ್ನ ಎಡಬದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
5 |
ಯಾವುದೇ ಎರಡು ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಇಲ್ಲದೇ ಇರುವಾಗ ಈ ಕ್ರಿಯೆಯನ್ನು ನಿಲ್ಲಿಸಿ. |
ಸಾಮಾನ್ಯ ಭಾಜಕಗಳ ಮತ್ತು ಉಳಿದ ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧವೇ ಲ.ಸಾ.ಅ.
ಉದಾ: 16,24,20 ಇವುಗಳ ಲ.ಸಾ.ಅ
2 | 16,24,20
2 |
8,12,10
2 | 4,6,5
| 2,3,5
ದತ್ತ ಸಂಖ್ಯೆಗಳ ಲ.ಸಾ.ಅ (2*2*2)*(2*3*5)
= 240
ಗಮನಿಸಿ : ಯಾವುದೇ 2 ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ * ಲ.ಸಾ.ಅ = ಆ ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧ..
ಈ ನಿಯಮವನ್ನು ಬೀಜಾಕ್ಷರ ಪದಗಳಿಗೂ ಉಪಯೋಗಿಸಬಹುದು. ಹೀಗಾಗಿ 2 ಪದಗಳ ಗುಣಲಬ್ಧ ಮತ್ತು ಅವುಗಳ ಮ.ಸಾ.ಅ ಅಥವಾ ಲ.ಸಾ.ಅ ನಮಗೆ ತಿಳಿದಿದ್ದರೆ, ಕ್ರಮವಾಗಿ ಲ.ಸಾ.ಅ ಅಥವಾ ಮ.ಸಾ.ಅ ಗಳನ್ನು ನಾವು ಕಂಡುಹಿಡಿಯಬಹುದು.
2.5 ಸಮಸ್ಯೆ 1 : 16a4b3x3,
24b2m3n4y, 20a2b3nx3
ಇವುಗಳ ಮ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿಗಳ ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳ (16,24,20) ಮ.ಸಾ.ಅ =
4
ಚರಾಕ್ಷರಗಳ ಭಾಗ : a4b3x3,
b2m3n4y, a2b3nx3
ಇವುಗಳಲ್ಲಿ b ಯು ಸಾಮಾನ್ಯ ಅಪವರ್ತನ.
4b | 16a4b3x3,
24b2m3n4y, 20a2b3nx3
(ಎಲ್ಲಾ ಪದಗಳಿಗೆ 4b ಯು ಸಾಮಾನ್ಯ ಪದವಾಗಿರುವುದರಿಂದ, 4b ನಿಂದ ಭಾಗಿಸುವಾ.
b | 4a4b2x3, 6bm3n4y,
5a2b2nx3 (b ಯು ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ)
|4a4bx3,
6m3n4y, 5a2bnx3
ಇನ್ನು ಎಲ್ಲವುದಕ್ಕೂ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಇಲ್ಲ. ಆದ್ದರಿಂದ ಭಾಗಾಕಾರ ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ದತ್ತ ಪದಗಳ ಮ.ಸಾ.ಅ = 4b*b= 4b2
ಬೀಜೋಕ್ತಿಗಳ ಸಂಕಲನ, ವ್ಯವಕಲನದಲ್ಲಿ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳನ್ನು ಪ್ರತ್ಯೇಕಿಸಿ, ಸುಲಭರೂಪಕ್ಕೆ ತರಲು ಮ.ಸಾ.ಅ ಸಹಾಯಕ
ಉದಾ: 16a4b3x3+24b2m3n4y-
20a2b3nx3
16a4b3x3+24b2m3n4y-
20a2b3nx3
=4b2(4a4bx3+6m3n4y-
5a2bnx3)
2.5 ಸಮಸ್ಯೆ 2 : 6x2y3,
8x3y2, 12x4y3, 10x3y4
ಇವುಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸ.ಅ ಕಂಡುಹಿಡಿ.
ಪರಿಹಾರ:
1) ಮ.ಸ.ಅ ಕಂಡುಹಿಡಿಯುವುದು:
ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳ ಮ.ಸಾ.ಅ = 2
ಉಳಿದ ಭಾಗಗಳ ಕನಿಷ್ಟ ಭಾಜಕ = x
2x | 6x2y3, 8x3y2,
12x4y3, 10x3y4 (2x ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ )
x | 3xy3, 4x2y2,
6x3y3, 5x2y4
y |3y3, 4xy2, 6x2y3, 5xy4
y |3y2, 4xy,
6x2y2, 5xy3
3y,
4x, 6x2y, 5xy2
ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ ಇಲ್ಲದೇ ಇರುವುದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ದತ್ತ ಪದಗಳ ಮ.ಸಾ.ಅ = 2x*x*y*y = 2x2y2
ಮ.ಸ.ಅ ದ
ಉಪಯೋಗ:
ಸಂಕ್ಷೇಪಿಸಿ: 6x2y3+8x3y2-12x4y3+10x3y4
6x2y3+8x3y2-12x4y3+10x3y4
= 2x2y2(3y+4x-6x2y+5xy2)
2) ಲ.ಸ.ಅ ಕಂಡುಹಿಡಿಯುವುದು:
2x | 6x2y3, 8x3y2,
12x4y3, 10x3y4 (2x ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ)
x | 3xy3, 4x2y2,
6x3y3, 5x2y4
y |3y3, 4xy2, 6x2y3, 5xy4
y |3y2, 4xy,
6x2y2, 5xy3
Y |3y, 4x,
6x2y , 5xy2
x | 3, 4x
6x2, 5xy
2 | 3, 4
6x 5y
ญญญญญญญญญญญญญญ 3 | 3, 2
3x 5y
| 1, 2 x 5y
ಯಾವುದೇ ಎರಡು ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ ಇಲ್ಲದೇ ಇರುವುದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ದತ್ತ ಪದಗಳ ಲ.ಸಾ.ಅ =( 2x*x*y*Y)*(Y*x*2*3*2*x*5y)
=2x2y2* 60x2y2 = 120x4y4
ಲ. ಸ.ಅ ದ
ಉಪಯೋಗ:
ಸಂಕ್ಷೇಪಿಸಿ::
(1/6x2y3)+(1/8x3y2)-(1/12x4y3
)+(1/10x3y4)
ಗಮನಿಸಿ:
(1/6x2y3) = (20x2y/120x4y4)
(1/8x3y2) = (15xy2/120x4y4)
(1/12x4y3)
= (10y/120x4y4)
(1/10x3y4)
= (12x/120x4y4)
(1/6x2y3)+(1/8x3y2)-(1/12x4y3
)+(1/10x3y4)
= (20x2y+15xy2-10y+12x)๗(120x4y4)
2.5 ಕಲಿತ ಸಾರಾಂಶ
ಸಂ. |
ಕಲಿತ ಅಂಶಗಳು |
1 |
ಬೀಜ ಪದಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಗಳನ್ನು ಭಾಗಾಕಾರ ಕ್ರಮದಲ್ಲಿ ಕಂಡುಹಿಡಿಯುವುದು. |