2.2. ಘಾತಾಂಕಗಳು (Exponents):
ಒಂದು ಕೋಟಿಯಲ್ಲಿ 1
ರ ಮುಂದೆ ಎಷ್ಟು 0 ಗಳಿವೆ?
ರಾಮಾಯಣದ ಯುದ್ಧ ಕಾಂಡದಲ್ಲಿನ ಈ ಶ್ಲೋಕಗಳನ್ನು ಗಮನಿಸಿ:
ಶತಂ ಶತಸಹಸ್ರಾಣಾಂ ಕೋಟಿ ಮಾಹುರ್ಮನೀಷಣ |1|
ಅರ್ಥ: 100*100*1000 = ಕೋಟಿ
ಶತಂ ಕೋಟಿಸಹಸ್ರಾಣಾಂ ಶಂಖ ಇತ್ಯಭಿಧೀಯತೇ ||2||
ಅರ್ಥ: 100* ಕೋಟಿ *1000 = ಶಂಖ
ಶಂಖದಲ್ಲಿ 1 ರ ಮುಂದೆ ಎಷ್ಟು 0 ಗಳಿವೆ?
ಶತಂ ಶಂಖ ಸಹಸ್ರಾಣಾಂ ಮಹಾಶಂಖ ಇತಿಸ್ಮೃತ:|3|
ಅರ್ಥ: 100* ಶಂಖ * 1000 = ಮಹಾಶಂಖ
ರಾಮಾಯಣದ ಕಾಲ ಅತಿ ಕಡಿಮೆ ಎಂದರೆ ಕ್ರಿ. ಪೂ 4000 ಆಗಿದ್ದು, ಆಗಿನ ಕಾಲದಲ್ಲೆ ಸೊನ್ನೆ ಮತ್ತು ದಶಮಾಂಶ ಪದ್ಧತಿಯು ಬಳಕೆಯಲ್ಲಿ ಇತ್ತು ಎಂದು ಇದರಿಂದ ತಿಳಿದು ಬರುತ್ತದೆ.
ಮೇಲೆ ತಿಳಿಸಿದಂತಹ ಡೊಡ್ಡ ಸಂಖ್ಯೆಗಳನ್ನು ಸುಲಭವಾಗಿ ನೆನಪಿನಲ್ಲಿ ಇಟ್ಟುಕೊಳ್ಳುವುದು ಮತ್ತು ಗುಣಿಸುವುದು ಹೇಗೆ ಎಂದು ಇಲ್ಲಿ ಕಲಿಯಲಿದ್ದೇವೆ.
16 = 2*2*2*2 (ಸಂಖ್ಯೆ 2ನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿದೆ.)
ಆದ್ದರಿಂದ 16 – ಇದನ್ನು 2ರ 4ನೇ ಘಾತ ಎನ್ನುವರು
16
= 24.
2ನ್ನು 4ನೆ ಘಾತಕ್ಕೆ ಏರಿಸಿದಾಗ 16 ದೊರೆಯುವುದು
16= 4*4 = 42 (4 ರ ಘಾತ 2 = 16)
ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳನ್ನು ಅಪವರ್ತಿಸಿದ ಹಾಗೆಯೇ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಬಹುದು.
ಉದಾ:
x3= x*x*x
x3 ನ್ನು xನ 3 ನೇ ಘಾತ ಎನ್ನುವರು.
ಈ ರೀತಿ x*x*x ನ್ನು x3 ರಿಂದ ಸೂಚಿಸುವ ಈ ಕ್ರಮವನ್ನು ‘ಘಾತಾಂಕದ ಸಂಕೇತದಿಂದ ಸೂಚಿಸುವಿಕೆ’
( ‘exponential notation’ ) ಎನ್ನುವರು.
ಸಾಮಾನ್ಯವಾಗಿ:
xn = x *x*x* …. n ಬಾರಿ
ಇಲ್ಲಿ x ನ್ನು ‘ಆಧಾರ ಸಂಖ್ಯೆ’ (base) ಮತ್ತು n ನ್ನು ‘ಘಾತ ಸೂಚಿ’ (exponent Or ‘index’) ಎಂತಲೂ ಕರೆಯುತ್ತಾರೆ.
(ಆಧಾರಸಂಖ್ಯೆ) ಘಾತಾಂಕ = ಸಂಖ್ಯೆ
(Base) Exponent = Number
ಗಮನಿಸಿ: a = a1
2.2 ಸಮಸ್ಯೆ 1: 1331 ನ್ನು11 ರ ಆಧಾರದಲ್ಲಿ ಬರೆಯಿರಿ.
ಪರಿಹಾರ:
1331 ರ ಅಪವರ್ತನೆಗಳು =
11, 11, 11
1331 = 11*11*11 = 113
ಈಗ ನಾವು 25
ಮತ್ತು 23 ಗಳ ಗುಣಲಬ್ಧ ನೋಡುವಾ
25 *23
= (2*2*2*2*2)*(2*2*2) = 28
ಇಲ್ಲಿ ಗಮನಿಸಿ: 8 =5+3
1. ಮೇಲಿನ ಉದಾಹರಣೆಯಿಂದ ಘಾತಾಂಕದ ಮೊದಲ ನಿಯಮ (Product
Law) ವನ್ನು ಹೀಗೆ ಬರೆಯಬಹುದು.
x ಒಂದು ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು x 0 ಮತ್ತು m, n ಗಳು ಯಾವುದೇ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದರೆ,,
xm *xn = x(m+n)
2.2 ಸಮಸ್ಯೆ 2: ಸಂಕ್ಷೇಪಿಸಿ: a14 *b32 * a4 *b16
ಪರಿಹಾರ:
a14 *b32 * a4 *b16
= (a14 * a4 )*(b32
* b16) ( ಪದಗಳನ್ನು ವ್ಯವಸ್ಥೆಗೊಳಿಸಿದೆ.)
= (a14+4)*(b32+16) (ಮೊದಲ ನಿಯಮ.)
=a18 *b48
ಈಗ ನಾವು 25 ನ್ನ 23 ದಿಂದ ಭಾಗಿಸುವಾ.
25 /23
= (2*2*2*2*2)/(2*2*2) = 2*2=22
ಅದೇ ರೀತಿ, 23 /25 =
(2*2*2)/ (2*2*2*2*2) = 1/(2*2) = 1/(22)
23 /23
= (2*2*2)/(2*2*2) = 1
2. ಮೇಲಿನ ಉದಾಹರಣೆಗಳಿಂದ ಘಾತಾಂಕದ 2 ನೇ ನಿಯಮವನ್ನು (Quotient Law) ಹೀಗೆ ಬರೆಯಬಹುದು:
x ಒಂದು ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು x 0 , m ಮತ್ತು n ಗಳು ಯಾವುದೇ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದು m>n
ಆದಾಗ, xm /xn = 1/x(m-n)
x ಒಂದು ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು x 0 ,m ಮತ್ತು n ಗಳು ಯಾವುದೇ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದು m<n
ಆದಾಗ, xm /xn = 1/(x(n-m) )
ವ್ಯಾಖ್ಯೆಯಂತೆ, x 0 ಆದಾಗ,
1) xm = 1/( x-m)
2) x-m = 1/ ( xm)
3) n ಒಂದು ಧನ ಪೂರ್ಣಾಂಕವಾದಾಗ, a 0 ಆದಾಗ, = a1/n
4) a 0 ಆದಾಗ, n 0 ಒಂದು ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಯಾದಾಗ, am/n=
ಗಮನಿಸಿ:
x0 =1 (1 = xm /xm = x(m-m)
)
2.2 ಸಮಸ್ಯೆ 3: 10-5 ಮತ್ತು 2/m-1 ಗಳನ್ನು ಧನ ಘಾತಾಂಕರೂಪದಲ್ಲಿ ಬರೆ.
ಪರಿಹಾರ:
10-5 = 1/105
2/m-1= 2/(1/m1) = 2m1
=2m
2.2 ಸಮಸ್ಯೆ 4: ಸಂಕ್ಷೇಪಿಸಿ: xa+b /xb-c
ಪರಿಹಾರ:
xa+b /xb-c
= xa+b /1/(x-(b-c))
= xa+b *x-(b-c)
= xa+b+(-(b-c)) (2ನೇ ನಿಯಮ)
= xa+b-b+c(-(b-c) = -b+c)
= xa+c
ಈಗ 52 , 52 ಮತ್ತು 52 ಗಳ ಗುಣಲಬ್ಧ ಕಂಡುಹಿಡಿಯುವಾ.
52 *52*52=
(5*5)*(5*5)*(5*5) = 56
ಇದನ್ನು ಈ ರೀತಿಯಾಗಿಯೂ ಬರೆಯಬಹುದು.
52 *52*52 = (52)3
= 52*3
3. ಮೇಲಿನ ಉದಾಹರಣೆಯಿಂದ ಘಾತಾಂಕಗಳ 3 ನೇ ನಿಯಮವನ್ನು (Power law) ಹೀಗೆ ಬರೆಯಬಹುದು:
x ಎಂಬುದು ಸೊನ್ನೆಯಲ್ಲದ ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು m
ಮತ್ತು n ಗಳು ಸಂಖ್ಯೆಗಳಾಗಿದ್ದರೆ,
(xm )n = xmn
2.2 ಸಮಸ್ಯೆ 5 : ಸಂಕ್ಷೇಪಿಸಿ [{(x2)2}2]2
ಪರಿಹಾರ:
(x2)2=
x4
{(x2)2}2 = {x4}2
= x8
[{(x2)2}2]2
= [x8]2= x16
ಅಭ್ಯಾಸ : ಪ್ರತಿ ಪದವನ್ನು ವಿಸ್ತರಿಸಿ ತಾಳೆನೋಡಿ
ಈಗ, (2*5)3 ಇದನ್ನು ವಿಸ್ತರಿಸುವಾ:
(2*5)3 = (2*5)*(2*5)*(2*5) ವ್ಯಾಖ್ಯೆಯಂತೆ.
= (2*2*2)*(5*5*5)
= (2)3*(5)3
4 ಈ ಮೇಲಿನ ಉದಾಹರಣೆಯಿಂದ ಘಾತಾಂಕಗಳ 4 ನೇ ನಿಯಮವನ್ನು ಹೀಗೆ ಬರೆಯಬಹುದು:
x ಮತ್ತು y ಗಳು ಸೊನ್ನೆಯಲ್ಲದ ವಾಸ್ತವ ಸಂಖ್ಯೆಗಳಾದಾಗ,ಮತ್ತು m ಯಾವುದೇ ಸಂಖ್ಯೆಯಾದಾಗ,
(x*y)m = (xm)* (ym)
2.2 ಸಮಸ್ಯೆ 6: ಸಂಕ್ಷೇಪಿಸಿ: (5x-3 y-2)3
ಪರಿಹಾರ:
(5x-3
y-2)3
= (5)3 *(x-3)3*(y-2)3
( 4 ನೇ ನಿಯಮ)
= 53* x-9* y-6 (3 ನೇ ನಿಯಮ)
= 53/( x9* y6) (ವ್ಯಾಖ್ಯೆಯಿಂದ)
ಅಭ್ಯಾಸ : ಪ್ರತಿ ಪದವನ್ನು ವಿಸ್ತರಿಸಿ ತಾಳೆನೋಡಿ
2.2 ಸಮಸ್ಯೆ 7: ಸಂಕ್ಷೇಪಿಸಿ: (3x-2 y)-1
ಪರಿಹಾರ:
(3x-2
y)-1
= (3) -1*( x-2)-1
*(y)-1 --à( 4 ನೇ ನಿಯಮ)
= (3) -1* x+2 *y-1 ----à (3 ನೇ ನಿಯಮ)
= x2 /3*y--à (ವ್ಯಾಖ್ಯೆಯಿಂದ)
ಪ್ರತಿ ಪದವನ್ನು ವಿಸ್ತರಿಸಿ ತಾಳೆನೋಡಿ
ಈಗ (2*5)3 ನ್ನು ವಿಸ್ತರಿಸುವಾ:
(2/5)3 = (2/5)*(2/5)*(2/5)
= (2*2*2)/(5*5*5)
= (2)3/(5)3
4. ಈ ಮೇಲಿನ ಉದಾಹರಣೆಯಿಂದ ಘಾತಾಂಕಗಳ 5 ನೇ ನಿಯಮವನ್ನು ಹೀಗೆ ಬರೆಯಬಹುದು:
x ಮತ್ತು y ಗಳು ಸೊನ್ನೆಯಲ್ಲದ ವಾಸ್ತವ ಸಂಖ್ಯೆಗಳಾದಾಗ, m ಒಂದು ಸಂಖ್ಯೆಯಾದಾಗ,
(x/y)m = (xm)/ (ym)
ಗಮನಿಸಿ:
(-1)2 = (-1)*(-1) =+1 and (-1)3
= (-1)*(-1)*(-1) = -1
1. m ಒಂದು ಸಮ ಸಂಖ್ಯೆಯಾದಾಗ, (-a)m = (-1)m *am = am
2. m ಒಂದು ಬೆಸ ಸಂಖ್ಯೆಯಾದಾಗ (-a)m = (-1)m
*am = -am
ಸಾಧನೆ:
1. m ಒಂದು ಸಮ ಸಂಖ್ಯೆಯಾದಾಗ ಅದರ ರೂಪ 2n ರೀತಿಯಲ್ಲಿ ಇರುತ್ತದೆ (n= 1,2.3 . . .)
(-1)m = (-1)2n = ((-1)2 )n ----à3 ನೇ ನಿಯಮ
= 1n
= 1
2. m ಒಂದು ಬೆಸ ಸಂಖ್ಯೆಯಾದಾಗ ಅದರ ರೂಪ 2n+1 ರೀತಿಯಲ್ಲಿ ಇರುತ್ತದೆ (n= 0,1,2.3 . . .)
(-1)m = (-1)2n+1 = (-1)2n *(-1)1
----à 2 ನೇ ನಿಯಮ
= 1n *-1 ----à (ಹಿಂದಿನ ಹಂತದಲ್ಲಿ ಸಾಧಿಸಿದೆ)
= -1
2.2 ಸಮಸ್ಯೆ 8 : ಸಂಕ್ಷೇಪಿಸಿ: (am/an)p*(an/ap)m*(ap/am)n
ಪರಿಹಾರ:
(am/an)p
= (am)p/(an)p (5ನೇ ನಿಯಮ)
= amp/ anp (3ನೇ ನಿಯಮ)
(am/an)p*(an/ap)m*(ap/am)n
= (amp/ anp)* (anm/
apm)* (apn/ amn)
= (amp* anm* apn)/
(anp*apm*amn) (ಅಂಶ, ಛೇದಗಳೆರಡೂ ಒಂದೇ)
=1
2.2 ಸಮಸ್ಯೆ 9 : ಸಂಕ್ಷೇಪಿಸಿ:(a4b-5/ a2b-4)-3
ಪರಿಹಾರ:
ಮೊದಲು ಆವರಣದ ಒಳಗಿರುವ ಭಾಗವನ್ನು ಸಂಕ್ಷೇಪಿಸಿದಾಗ,
(a4b-5/
a2b-4)
= (a4/ a2) * (b-5/
b-4)
= (a2/ b) ( (2 ನೇ ನಿಯಮ)- (a4/ a2)
= (a4-2) = a2, (b-5/
b-4) = (b-5-(-4)) = b-5+4= b-1= 1/b )
ಈಗ ಕೊಟ್ಟ ಸಮಸ್ಯೆ ನೋಡುವಾ
(a4b-5/
a2b-4)-3
= (a2/ b)-3
= (a2/ b)-3
= (a2)-3/ (b)-3 (3ನೇ ನಿಯಮ)
=a-6/b-3
= b3/a6
ಪರ್ಯಾಯ ವಿಧಾನ:
(a4b-5/
a2b-4)-3
= (a-12b+15/ a-6b+12) (3ನೇ ನಿಯಮ)
=(a-12/ a-6)* (b15/
b12) (ಪದಗಳನ್ನು ಜೋಡಿಸಿದಾಗ)
=(a-12* a6)* (b15*
b- 12) (ಸೂತ್ರ x -m = 1/( xm) )
=(a-12+6)* (b15-12) (ಮೊದಲ ನಿಯಮ)
=a-6*b3
= b3/a6
2.2 ಕಲಿತ ಸಾರಾಂಶ
ಸಂಖ್ಯೆ |
ಕಲಿತ ಮುಖ್ಯಾಂಶಗಳು |
1 |
ವ್ಯಾಖ್ಯೆಯಂತೆ, xn = x*x*x*x – n ಬಾರಿ |
2 |
(ಆಧಾರಸಂಖ್ಯೆ) ಘಾತಾಂಕ = ಸಂಖ್ಯೆ |
3 |
ವ್ಯಾಖ್ಯೆಯಂತೆ, x0 =1 |
4 |
ವ್ಯಾಖ್ಯೆಯಂತೆ, x - m = 1/( xm) |
5 |
ಮೊದಲ ನಿಯಮ:xm *xn = x(m+n) |
6 |
2 ನೇ ನಿಯಮ xm /xn = x(m-n) |
7 |
3 ನೇ ನಿಯಮ (xm )n = xmn |
8 |
4 ನೇ ನಿಯಮ (x*y)m = (xm)* (ym) |
9 |
5 ನೇ ನಿಯಮ (x/y)m = (xm)/ (ym) |
ಹೆಚ್ಚಿನ ಕಲಿಕೆಗಾಗಿ:
2.2 ಸಮಸ್ಯೆ 10 : 1960 = 2a5b7c
ಆದರೆ, 2-a7b5-c ನ ಬೆಲೆ ಕಂಡುಹಿಡಿ.
ಪರಿಹಾರ:
1960 = 2*2*2*5*7*7=
235172
a=3, b=1 , c=2
2-a =1/8 and 5-c =1/25
2-a7b5-c
= (1/8)*7*(1/25) = 7/200
2.2 ಸಮಸ್ಯೆ 11 : ಸಂಕ್ಷೇಪಿಸಿ: {(8x3)/ 125y3}2/3
ಪರಿಹಾರ:
ಈಗ:
8x3=(2x)3
and 125y3=(5y)3
(8x3)/125y3
=(2x/5y)3
{(8x3)/125y3}2/3
={(2x/5y)3}2/3
=(2x/5y)3*2/3
=(2x/5y)2
= 4x2/25y2
2.2 ಸಮಸ್ಯೆ 12 :3x-1 = 9*34 ಆದರೆ x ನ ಬೆಲೆ ಕಂಡುಹಿಡಿ.
ಪರಿಹಾರ:
9 = 32
9*34= 32*34=36
ಈಗ
3x-1 = 9*34 =36,
x-1 = 6
x=7
ತಾಳೆ:
x ನ ಬೆಲೆಯನ್ನು(=7)ದತ್ತ ಸಮಸ್ಯೆಯಲ್ಲಿ ಆದೇಶಿಸಿ, ವಿಸ್ತರಿಸಿ ಉತ್ತರವನ್ನು ತಾಳೆನೋಡಿ (= 729)