6.1 ಪೀಠಿಕೆ   (Introduction):

ರೇಖಾಗಣಿತವು ಆಕಾಶದಲ್ಲಿರುವ ವಸ್ತುಗಳ ಅಥವಾ ನಮ್ಮ ಸುತ್ತ ಮುತ್ತ ಕಂಡು ಬರುವ ಆಕೃತಿಗಳ ಗಾತ್ರ ಆಕಾರ, ರಚನೆ ಮತ್ತು ಲಕ್ಷಣಗಳನ್ನು ಅಧ್ಯಯನ ಮಾಡುವ ಗಣಿತ ಶಾಸ್ತ್ರದ ಒಂದು ಭಾಗವಾಗಿದೆ. ಭಾರತದಲ್ಲಿ ವೇದಗಳ ಕಾಲದಲ್ಲಿ ಯಜ್ಞ ವೇದಿಕೆ ಮತ್ತು ಯಜ್ಞಕುಂಡಗಳ ರಚನೆಯಲ್ಲಿ ರೇಖಾಗಣಿತದ ಜ್ಞಾನವನ್ನು ಬಳಸುತ್ತಿದ್ದರು. ಆ ಕಾಲದಲ್ಲಿಯೂ ಅವರು ಖಗೋಳ ಶಾಸ್ತ್ರದಲ್ಲಿ ಎಷ್ಟು ಪರಿಣಿತರಾಗಿದ್ದರೆಂದರೆ, ಅವರು ಅನುಸರಿಸಿದ ಲೆಕ್ಕಾಚಾರದ ಕ್ರಮವನ್ನು ಇಂದಿಗೂ ಅನುಸರಿಸಿ, ಹಲವು ವರ್ಷಗಳ ಮೊದಲೇ, ಗ್ರಹಣ ಸಂಭಿಸುವ ದಿನಾಂಕ ಮತ್ತು ಸಮಯಗಳನ್ನು (ಆರಂಭ, ಮಧ್ಯ, ಅಂತಿಮ ಕಾಲ) ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ನಿಖರವಾಗಿ ಹೇಳುತ್ತಾರೆ.

 

 

1.      ಸ್ಕೇಲ್ ಬಳಸದೇ ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ಗೆರೆಯನ್ನು ಸಮನಾಗಿ 2 ಭಾಗ ಮಾಡುವುದು ಹೇಗೆ?

2.      ಟ್ಯಾಂಕರ್ ಮೂಲಕ ಸರಬರಾಜು ಮಾಡುವ ಪೆಟ್ರೋಲ್/ಹಾಲು/ನೀರು ಇವುಗಳನ್ನು ಗಳನ್ನು ಶೇಖರಿಸಿಡಲು ಎಷ್ಟು ಗಾತ್ರದ(ಲೀಟರ್) ಟ್ಯಾಂಕ್ ಕಟ್ಟಿಸಬೇಕು?

3.      ನಿಮ್ಮ ಮನೆಯಲ್ಲಿ ಅಮ್ಮ ಮತ್ತು ಅಜ್ಜಿಯಂದಿರು ಅಥವಾ ಅಂಗಡಿಯವರು ಬರ್ಫಿಯನ್ನು ಆಯತಾಕೃತಿಯಲ್ಲಿ ಕತ್ತರಿಸುವ ಬದಲು ಸಮಾಂತರ ಚತುರ್ಭುಜಾಕೃತಿಯಲ್ಲಿ ಏಕೆ ಕತ್ತರಿಸುತ್ತಾರೆ?

 

ಇಂತಹ ಹಲವು ಪ್ರಶ್ನೆಗಳಿಗೆ ರೇಖಾಗಣಿತದಲ್ಲಿ ಉತ್ತರ ಸಿಗುತ್ತದೆ.

 

 

6.1.0 ವ್ಯಾಖ್ಯೆಗಳು ಮತ್ತು ಕೆಲವು ಮೂಲಭೂತ ರಚನೆಗಳು (Definitions and some basic constructions):

ವ್ಯಾಖ್ಯೆಗಳು:

1. ಕೋನ (Angle): ಉಭಯ ಸಾಮಾನ್ಯ ಆದಿ ಬಿಂದುವುಳ್ಳ ಎರಡು ಕಿರಣಗಳನ್ನೊಳಗೊಂಡ ಭಾಗವು ಒಂದು ಕೋನ. ಕೋನವನ್ನು ಡಿಗ್ರಿಯಲ್ಲಿ ಅಳೆಯುತ್ತಾರೆ (00 ಯಿಂದ 3600)

ಸಾಮಾನ್ಯ ಬಿಂದುವನ್ನು ಶೃಂಗಬಿಂದು (vertex) ಎನ್ನುತ್ತೇವೆ. ಚಿತ್ರದಲ್ಲಿ B ಯು ಶೃಂಗ ಬಿಂದು. ABC ಕೋನ.

ಇದನ್ನು ABC ಎಂದು ಬರೆಯುತ್ತೇವೆ. ಕೋನ ಮಾಪಕದ ಸಹಾಯದಿಂದ ಇದನ್ನು ಅಳೆದಾಗ, ABC = 500  .    

ABC = CBA = 500   ಎನ್ನುವುದನ್ನು ಗಮನಿಸಿ.

 

 

ಸಂ.

ಕೋನದ ವಿಧ

ಕೋನದ ಅಳತೆ

ಬದಿಯ ಚಿತ್ರದಲ್ಲಿ ಉದಾಹರಣೆ

1

ಲಘುಕೋನ

00  ಯಿಂದ 900

AOC

2

ಲಂಬಕೋನ

= 900

 

3

ವಿಶಾಲಕೋನ

900  ಯಿಂದ 1800

ಚಿಕ್ಕ COB( ಪ್ರದಕ್ಷಿಣ )

4

ಸರಳಕೋನ

= 1800( ಸರಳ ರೇಖೆಯ ಮೇಲಿನ ಕೋನ)

AOB

5

ಸರಳಾಧಿಕ ಕೋನ

1800  ಯಿಂದ 3600

ದೊಡ್ಡ BOC(ಪ್ರದಕ್ಷಿಣ )


 

6.1.1. ದತ್ತ ಸರಳರೇಖೆಗೆ ದತ್ತ ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ಲಂಬವನ್ನೆಳೆಯುವುದು (Construction of Perpendicular to a line from a point):

 

ಹಂತ 1: ಕೊಟ್ಟ ಅಳತೆಯ AB ಸರಳ ರೇಖೆಯನ್ನು ಎಳೆಯಿರಿ. C ಯು ದತ್ತ ಬಾಹ್ಯಬಿಂದು.

ಹಂತ 2: C ಯನ್ನು ಕೇಂದ್ರವಾಗಿಟ್ಟುಕೊಂಡು ಅನುಕೂಲವಾದ ತ್ರಿಜ್ಯದಿಂದ AB ರೇಖೆಯನ್ನು ಎರಡು ಪ್ರತ್ಯೇಕ ಬಿಂದುಗಳು X, Y ಗಳಲ್ಲಿ ಕಡಿಯುವಂತೆ ಒಂದು ಕಂಸವನ್ನೆಳೆಯಿರಿ.

ಹಂತ 3: X ಮತ್ತು Y ಗಳನ್ನು ಕೇಂದ್ರವಾಗಿಟ್ಟುಕೊಂಡು XY ಯ ಅರ್ಧಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ತ್ರಿಜ್ಯದಿಂದ ಎರಡು ಕಂಸಗಳನ್ನು ಪರಸ್ಪರ Z ನಲ್ಲಿ ಕಡಿಯುವಂತೆ ಎರಡು ಕಂಸಗಳನ್ನೆಳೆಯಿರಿ.

ಹಂತ 4: C ಮತ್ತು Z ಗಳನ್ನು ಜೋಡಿಸಿ. CZ ರೇಖೆಯು AB ಯನ್ನು L ಬಿಂದುವಿನಲ್ಲಿ ಛೇದಿಸಲಿ.CL ಎಂಬುದು ABಗೆ ಲಂಬವಾಗಿರುತ್ತದೆ.

ಗಮನಿಸಿ: ದತ್ತ ಸರಳರೇಖೆಯ ಮೇಲೆಯೇ ಇರುವ ಬಿಂದುವಿನಲ್ಲಿ ಲಂಬವನ್ನು ಎಳೆಯುವ ಕ್ರಮವೂ ಹೀಗೆಯೇ ಆಗಿದೆ.(Cಯು AB ಯ ಮೇಲೆ L ನಂತೆಯೇ ಒಂದು ಬಿಂದು ಆಗಿರಬಹುದು)

 

ಗಮನಿಸಿ: ಬಾ.ಬಾ.ಬಾ ಮತ್ತು ಬಾ.ಕೋ.ಬಾ ಸ್ವಯಂಸಿದ್ಧ (ಅಧ್ಯಾಯ 6.4.3) ದಂತೆ CLY =CLX = 900 ಎಂದು ಸಾಧಿಸಬಹುದು.

 

6.1.2. ದತ್ತ ಸರಳರೇಖೆಯ ಲಂಬ ದ್ವಿಭಾಜಕವನ್ನೆಳೆಯುವುದು (Construction of Perpendicular bisector to a line):

 

ಹಂತ 1 : ದತ್ತ ಅಳತೆಯ AB ಸರಳರೇಖೆಯನ್ನೆಳೆಯಿರಿ

ಹಂತ 2: Aಯನ್ನು ಕೇಂದ್ರವಾಗಿಟ್ಟುಕೊಂಡು, AB ಯ ಅರ್ಧಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ತ್ರಿಜ್ಯದಿಂದ ABಯ ಎರಡೂ ಬದಿಗಳಲ್ಲಿಒಂದೊಂದು ಕಂಸಗಳನ್ನೆಳೆಯಿರಿ. B ಬಿಂದುವನ್ನು ಕೇಂದ್ರವಾಗಿಟ್ಟುಕೊಂಡು, ಅದೇ ತ್ರಿಜ್ಯದಿಂದ ಮುಂಚಿನ ಕಂಸಗಳನ್ನುX ಮತ್ತು Y ಗಳಲ್ಲಿ ಕಡಿಯುವಂತೆ ಇನ್ನೆರಡು ಕಂಸಗಳನ್ನೆಳೆಯಿರಿ.  

ಹಂತ 3: XY ಯನ್ನು ಸೇರಿಸಿ. ಅದು ABಯನ್ನುL ನಲ್ಲಿ ಛೇದಿಸಿದೆ. ಈಗ XY ಯು AB ಯನ್ನು ಅರ್ಧಿಸುತ್ತದೆ, ABಯು XY ಗೆ ಲಂಬವಾಗಿದೆ. L ಎಂಬುದು ABಯ ಮಧ್ಯಬಿಂದು

 

 

ಗಮನಿಸಿ: ಬಾ.ಬಾ.ಬಾ. ಮತ್ತು ಬಾ.ಕೋ.ಬಾ. ಸ್ವಯಂಸಿದ್ಧ (ಅಧ್ಯಾಯ 6.4.3)ಆಧಾರದಲ್ಲಿ AL=BL and ALY =YLB = 900 ಎಂದು ಸಾಧಿಸಬಹುದು.

 

6.1.3. ಕೋನಾರ್ಧಕ ರೇಖೆಯನ್ನು ಎಳೆಯುವುದು (Construction of Angular bisector)

 

ಹಂತ 1: ಕೋನಮಾಪಕದ ಸಹಾಯದಿಂದ ದತ್ತ ಅಳತೆಯ  CAB ರಚಿಸಿ.

ಹಂತ 2: A ಯನ್ನು ಕೇಂದ್ರವಾಗಿಟ್ಟುಕೊಂಡು, ಅನುಕೂಲವಾದ ತ್ರಿಜ್ಯದ ಸಹಾಯದಿಂದ,, AB ಮತ್ತು ACಗಳನ್ನುP ಮತ್ತು Q ಬಿಂದುಗಳಲ್ಲಿ ಛೇದಿಸುವಂತೆ ಕಂಸವನ್ನೆಳೆಯಿರಿ.

ಹಂತ 3: ಈಗ P ಮತ್ತು Q ಕೇಂದ್ರವಾಗಿಟ್ಟುಕೊಂಡು PQ ಅರ್ಧಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ತ್ರಿಜ್ಯದಿಂದ ಎರಡು ಕಂಸಗಳನ್ನು R ನಲ್ಲಿ ಕಡಿಯುವಂತೆ ಎಳೆಯಿರಿ.

ಹಂತ 4: ARಜೋಡಿಸಿ.AR ರೇಖೆಯು CABಯ ಕೋನಾರ್ಧಕ ರೇಖೆ. (CAR =RAB)

 

 

ಗಮನಿಸಿ: ಬಾ.ಬಾ.ಬಾ. ಮತ್ತು ಬಾ.ಕೋ.ಬಾ. ಸ್ವಯಂಸಿದ್ಧ ಸಹಾಯದಿಂದ (ಅಧ್ಯಾಯ 6.4.3)  CAR =RAB ಎಂದು ಸಾಧಿಸಬಹುದು.

 

 

6.1 ಕಲಿ  ಾರಾಂಶ

 

 

ಸಂ

ಕಲಿತ ಮುಖ್ಯಾಂಶಗಳು

1

ವ್ಯಾಖ್ಯೆಗಳು ಮತ್ತು ಮೂಲಭೂತ ರಚನೆಗಳು.